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Abstract—We describe our new methodology for Adaptive
Smoothed Particle Hydrodynamics (ASPH) and its application
to problems in modeling material failure. We find that ASPH is
often crucial for properly modeling such experiments, since in
most cases the strain placed on materials is non-isotropic (such
as a stretching rod), and without the directional adaptability
of ASPH numerical failure due to SPH nodes losing contact in
the straining direction can compete with or exceed the physical
process of failure.

I. I.

Modeling the processes of damage and fracture of materials
is an area where meshless methods offer clear benefits over
traditional mesh based hydrodynamic approaches. Damage
models ( [1], [6]) involve following history variables (such as a
damage fraction) tied to distinct chunks of mass through large
distortions in the fluid flow. These highly dynamic systems
usually force mesh based methods to perform some sort of
remap of the system in order to maintain a valid mesh,
introducing diffusive errors into the history variables. Robust
Lagrangian methods such as SPH solve this problem trivially
as their Lagrangian nature is ideally suited for following
properties tied to the mass distribution, though of course
meshless methods come with their own difficulties.

One challenge modeling material fracture presents for a
standard SPH approach is that the material strain field is often
strongly anisotropic, implying that the nodes representing the
material will undergo very anisotropic displacements. Con-
sider a rod being pulled apart along its length: the nodes
along the length of the rod will be separating, while the nodes
across the width of the rod will actually be approaching one
another as the rod compresses in that direction. This presents a
problem for adapting the scalar smoothing scale hi in SPH. The
goal of adapting hi is to keep the number of neighbors for each
SPH node roughly constant, which in our tensile rod example
will result in a compromise such that we preferentially sample
more and more nodes across the width of the rod while
simultaneously losing neighbors in the direction of stretching.
The worst case scenario as this process continues is that the
nodes will ultimately have too few neighbors in the stretching
direction in numerical fracture will occur simply due to the
nodes becoming decoupled.

One natural solution to this difficulty is to employ Adaptive
Smoothed Particle Hydrodynamics (ASPH) [7], which re-
places the scalar smoothing scale hi of SPH with a symmetric

(a) SPH

(b) ASPH

Fig. 1. Damage magnitude for (a) SPH and (b) ASPH models of a stretching
rod in 2D.

tensor Hαβi . The use of Hαβi allows the local sampling volume
for each node to be an arbitrary ellipse in 2D/ellipsoid in 3D,
freeing the technique from the unit aspect ratio sampling of
SPH. The ASPH algorithm strives not just to keep a constant
number of neighbors per node but also a constant number
of neighbors in each direction around each node, ensuring
problems such as numerical fracture in our tensile rod do not
occur. In Fig. 1 we compare two different models of a 2D rod
stretching horizontally, one SPH and one ASPH. The color
scale is the magnitude of the damage being evolved on each
node. The SPH model in Fig. 1(a) has failed numerically,
evidenced by the fact that at the break points the damage
variable does not indicate failure. By contrast the ASPH model
in Fig. 1(b) has failed where the physical damage model
indicates that it should. Fig. 2 compares the evolution of
the sampling volume shapes in these two models. The SPH
model in Fig. 2(a) shows the spherical sampling around each
node overlapping extensively across the width of the rod
while separating along the length, whereas the ASPH shapes
in Fig. 2(b) demonstrate the successful adaptation of ASPH
sampling volumes to distortion of the material.

II. C  SPH  ASPH  .

The ASPH fluid evolution equations are identical to the
SPH forms if one appropriately removes the references to the
smoothing scale by working in “normalized“ coordinates ηα,
where ηα is defined as ηα = xα/hi in SPH and ηα = Hαβi xβ in
ASPH. Note that Hαβi has units of inverse length, and ASPH
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(a) SPH (b) ASPH

Fig. 2. A zoom in on the shapes of the local nodal sampling volume
(essentially smoothing scale isocontours) for (a) SPH and (b) ASPH models
of the stretching rod show in Fig. 1 before the onset of physical failure.

reduces to SPH in the limit of forcing Hαβi = δ
αβh−1

i . In this
section we will focus on the problem of how to choose an
optimal hi (SPH) or Hαβi (ASPH) for each node.

In [7] we derive a time evolution equation for DHαβi /Dt
based on the assumption that the local Hαβi should try and track
the local deformation of the fluid with time – this is equivalent
to striving to keep the same set of neighbors for each node for
all time. Note that some meshless approaches carry this ap-
proach to the extreme in keeping the set of neighbors constant
for each point, sometimes referred to as the Lagrangian kernel.
This approach works well for relatively simple velocity fields,
but as the fluid flow becomes more complicated (particularly
in the presence of vorticity) this approximation must break
down. One simple example of such a system is a shear flow.
If we try to employ our concept of following the same set of
neighbors in a purely shearing flow then the sampling volumes
represented by the ellipsoidal Hαβi tensor will stretch and
distort to arbitrarily extreme aspect ratios with time, despite
the fact that the local nodal density is not changing. In fact
the normal SPH answer of a spherical sampling volume is a
fine solution to this system since the nodal density remains
unchanged in all directions in a pure shear. Previously with
just the Lagrangian definition of DHαβi /Dt we beat down such
problems by simply periodically smoothing the Hαβi field. This
smoothing helps prevent the growth of noise in the Hαβi field
as well as tamp down unwanted evolution due to vorticity, but
it also degrades much of our advantage in using ASPH since
the smoothing leads to overly round Hαβi tensors. A better
solution is to develop an algorithm to choose appropriate Hαβi
tensors for any instantaneous distribution of nodes, rather than
time evolving from a previous state. The goal of this “ideal
H” algorithm is choose the Hαβi field such that each node
sees a roughly constant number of neighbors in each direction.
Another way to express this algorithm is that if we view Hαβi
as a transformation into the normalized coordinate frame of
ηα, then in the local η space the neighbors of node i should
appear isotropic.

We will break up the task of finding the ideal Hαβi into two
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pieces: finding the scalar sampling volume represented by the
determinant ‖Hαβi ‖ discussed in §II-A, and finding the shape
H̃αβi (where ‖H̃αβi ‖ = 1) in §II-B. These two elements then
combine to give us the new Hαβi

new
= (‖Hαβi ‖)

1/νH̃αβi .

A. Choosing ‖Hαβi ‖.

Determining the optimal sampling volume for Hαβi is equiv-
alent to finding an appropriate SPH smoothing scale hi. We
choose to express this as function of the effective number
of nodes per smoothing scale, denoted by nh. For a given
sampling kernel W it is possible to build up a table of the
expected

∑
WH(η) as a function nh by simply performing such

a sum over a uniform lattice of points with the required spacing
in η space. Fig. 3 shows one such parameterization for a kernel
based on the popular cubic B spline kernel. We make the
distinction of WH vs. W here for reasons that are expanded
on in §II-C – for our discussion now we can consider W = WH .
Note that in Fig. 3 we are actually plotting a root of the zeroth
moment

Ψ0 ≡

∑
j

WH(η j)

1/ν (1)

where ν is the dimensionality of the system (1D, 2D, or 3D)
and η j = Hαβi xβi j. This results in a nice linear relationship
between Ψ0 and nh, which lends itself to interpolating for the
effective nh for any measured Ψ0.

Once we have identified the effective nh for a given node,
it is simple to find the ratio s ≡ ntarget

h /nh, telling us how much
we need to scale ‖Hαβi ‖ (or equivalently the SPH hi) in order
to get to our target number of nodes per smoothing scale ntarget

h .
In order to avoid instabilities with abruptly jumping around in
‖Hαβi ‖ we adopt an approach similar to that described in [9]
and define

a =
{

s < 1 : 0.4(1 + s2)
s ≥ 1 : 0.4(1 + s−3) , (2)
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hnew
i = (1 − a + as)hi, (3)

or equivalently for ‖Hαβi ‖

‖Hαβi ‖
new
= (1 − a + as)−ν‖Hαβi ‖. (4)

This whole procedure is very inexpensive – at simulation
startup we tabulate the table of Ψo(nh) for the chosen kernel
for a relevant range of nh, from which we can make a rapid
table lookup to get the effective nh as a function of the current
Ψ0 for any node. Once we have the nh we can immediately
derive the new hi for SPH (or ‖Hαβi ‖ for ASPH) according to
Eqs. 2–4. We use this procedure to update hi in all our SPH
simulations, giving us reliable control of the effective nh used.
This algorithm converges at second-order for hi, as we will
expand upon in future publications.

B. Choosing the shape H̃αβi .

In Appendix B of [7] we point out that the shape of
the Hαβi tensor can be related to the second moment of the
point distribution about any given node i. We exploit this
relationship here to derive the optimal shape for the new
sampling volume H̃αβi . We define the second moment of the
local sampling weight as

Ψ
αβ
2 =

∑
j

WH(ηi j)

ην−1
i j

2 x̂αi j x̂
β
i j, (5)

where xαi j = xαi − xαj , ηi j = Hαβi xαi j, and x̂αi j is the unit vector in
the direction of xαi j. We can relate the target shape for H̃αβi to
the square root of the inverse of Ψαβ2 ,

H̃αβi = (‖Ψαβ2 ‖)
1/4
(
(Ψ−1

2 )αβ
)1/2
. (6)

We have deliberately made Ψαβ2 a second moment of the
local kernel weight because it is the weighting with distance
that makes this sum sensitive to the local nodal spacing. One
can easily see the problem with using a direct second moment
of the node distribution: consider for instance a uniform node
distribution which has been compressed in one direction. The
distribution is still uniform in a volumetric sense (there is
a constant density of nodes), so the second moment of the
positions will be some scalar multiple of the unit tensor.
However, this is precisely the type of situation in which
we want the Hαβi tensor to adapt to the compression in one
dimension. The kernel weighting sensitivity of Eq. 5 builds in
this sensitivity to spacing and results in the desired behaviour.

C. Choosing WH .

In the relations for the zeroth and second moments Ψ0
and Ψαβ2 (Eqs. 1 and 5) we have made the distinction of the
kernel used: WH vs. W. The reason for this is due to the sets
of nodes we wish to focus on. Typical interpolation kernels
used for (A)SPH calculations are centrally peaked, such as
the cubic B spline or Gaussian. There are good reasons this
is desirable when evaluating gradients and derivatives, but
we have found in practice centrally peaked kernels make the
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Fig. 5. (a) Initial nodal positions and the associated η = 1 isocontour of
Hαβi . Panels (b) and (c) show the SPH and ASPH (respectively) fitted results
for a volume preserving distortion of the node positions.

Hαβi shape fitting too sensitive to the details of the nearest
neighbor node. This problem is exacerbated in the presence
of the well known tensile instability. Instead we have been
much more successful choosing a kernel that is peaked at some
intermediate distance from the central position, falling to zero
at the both the center of the kernel and its extreme range. One
simple choice for WH that meets this goal is the magnitude
of the gradient of the normal kernel: WH(η) = ‖∂ηW(η)‖.
Fig. 4 plots an example of what this looks like for the
cubic B spline. You can see this form of WH emphasizes
the contributions of nodes at intermediate distances in the
sampling volume, strongly deemphasizing contributions from
very near neighbors. Experience has shown this effectively
minimizes the effects of problems such as the tensile instability
in ASPH calculations.

D. An idealized example.

The combination of Eqs. 1, 4, 5, & 6 provide us with a low
cost method of defining the the new H̃αβi field for any nodal
distribution. The necessary sums of WH can be performed
at the same time we are evaluating the ASPH dynamical
equations, so the overhead is minimal. In Fig. 5 we show
an example applying these algorithms to find the new SPH
and ASPH sampling volumes for a node distribution which is
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(a) Maximum compression (b) Post-bounce

Fig. 6. The colliding rubber balls test of the tensile instability, colored
by pressure. Panel (a) represents the maximum deformation at the peak of
the collision, while panel (b) is long after the balls have bounced and are
separating.

distorted in a volume preserving manner – the initial nodes in
Fig. 5(a) are rotated by 45◦, stretched by a factor of 2 along
one axis of the lattice, and compressed by a factor of 2 in
the other. Since this distortion is volume preserving the SPH
solution remains unchanged, while the ASPH solution adjusts
to the rotation, compression, and expansion as expected.

E. The choice of ntarget

h .

Before we proceed to the comparison of simulations with
complicated experimental setups we should mention the sub-
ject of choosing the target number of nodes per smooth-
ing scale ntarget

h . It is well known that the accuracy of SPH
simulations can be a function of ntarget

h , and we have found
that it is critical to use adequate sampling (a large enough
value of ntarget

h ) in order to get good results for the shape
H̃αβi . Experimentally we have found the ntarget

h ∼ 2 works quite
well, which is roughly 1.5–2 times the typical choice for this
parameter. However, for values significantly below 2 we find
that both SPH and ASPH results degrade significantly – with
too few neighbors the noise/discreteness effects due to poor
representation of the numerical gradients can be raised to
the point that the order of convergence or even stability of
the system suffers. One effect we have noticed by increasing
ntarget

h ∼ 2 is that the tensile instability of SPH is significantly
reduced. As an example of this improvement we present the
results of running a well known test of the tensile instability
in Fig. 6: the collision of two rubber balls (see description
in [5]). When run with the usual choice of ntarget

h ≤ 1.2 we
see failure of this problem to survive a single bounce as
described in [5]. However, as is evident in Fig. 6(a) with
ntarget

h = 2 even at maximum compression the balls show no
sign of instability. We follow the evolution of the system
through many post-bounce oscillations to significantly later
times (shown in Fig. 6(b)) with no sign of instability. Note
this is all done without using any sort of fix-up for the tensile
instability such as described in [5]. We therefore recommend
that ASPH simulations be run with ntarget

h ∈ [1.5, 2] at all times,
preferring the larger value of 2. The penalty of course is
the significant increase in number of neighbors and therefore
computational expense as compared with more typical values
of ntarget

h ∈ [1, 1.2].

Fig. 7. Initial conditions (mass density) for the gas gun driven rupture of a
steel tube.

(a) Experiment (b) Simulation

Fig. 8. (a) Experimental photograph and (b) damage magnitude from
simulation of the rupturing steel tube gas gun experiment early in the process
of failure.

III. E.

In this section we will present several results applying the
ASPH formalism to problems of material fracture and failure.
Due to the space constraints we will not delve into all the
details of our equations here, but rather we refer the reader
to [7] for the general ASPH fluid equations, [5] for the solid
mechanics forms of these equations, and [1] for information on
damage modeling. We note parenthetically we have extended
the damage model in particular: we employ a tensor damage
variable for each node which evolves the damage indepen-
dently along each axis of the tensor according to a tensor
measure of the material strain. This tensor strain is a history
variable determined by the local differential velocity field –
it is not aligned with any particular coordinate system and
the eigen vectors of the strain and damage evolve and change
orientation appropriately due to the material deformation. We
also employ a modification of the usual energy equations that
exactly conserves the total energy. Our methodology for the
specific thermal energy update is based upon the ideas in [3],
and is explained in detail in a preprint available at [8].

A. Gas gun driven rupture of a steel tube.

Our first example problem is an experiment described in
[10] wherein a plastic projectile is fired by a gas gun into
hollow steel tube half-filled with a plastic plug. The projectile
impacts the plug and expands against the tube internally,
causing it to rupture. Fig. 7 shows a cutaway view of the initial
conditions for this problem. In Fig. 8 we compare a photograph
from the experiment early on as the tube is rupturing with
an image from the simulation at the same stage. We can see
qualitatively the rupturing in the simulation is similar to the
experiment, with the ruptures first occurring along the length
of the tube. Fig. 9 shows an end on view of the fragmentation
process in the simulation at much later time.
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Fig. 9. An end on view of the gas gun experiment at late time, demonstrating
the fragmentation process as the pieces begin to separate.
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Fig. 10. (a) Diagram of the placement of the VISAR velocimetry probes
along the tube for the gas gun experiment, and (b) comparison of experiment
and simulation for these diagnostics.

We prefer more quantitative comparisons of the simulation
and experiment, so in Fig. 10(b) we examine results for three
different VISAR velocimetry probes of the expansion of the
tube at different points along its length: probe A is 2.5cm from
the anvil, probe B 2cm, and probe C 1.5cm. This is a fairly
sensitive test, and we can see that while the simulation repro-
duces the qualitative behaviour of the measurements, probes
A and B show too much velocity relative to the experimental
diagnostics. Clearly there is room for improvement here.

Another diagnostic of interest is the distribution of frag-
ments. This experiment uses soft-capture to recover much
of the mass of the tube, which we can compare with the
population of simulated fragments identified by a friends of
friends algorithm once the simulation progresses such that
the fragments are well separated. In Fig. 11 we show a
comparison of of the morphology of the experimental and
simulated fragment populations. Fig. 12 plots a histogram of
the total mass in fragments as a function of the fragment mass
for both the recovered and simulated fragments. The results

(a) Recovered Fragments (b) Simulated Fragments

Fig. 11. Comparison of the experimentally recovered fragments from the
gas gun experiment with fragments identified in the simulation.
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Fig. 12. Histogram of the total mass in fragments in bins of individual
fragment masses.

seem in reasonable agreement, though of course we are dealing
with a small number population of fragments.

B. HE driven fragmentation of a steel spherical section.

Another interesting fragmentation experiment is described
in [2]. This experiment is a high explosive driven expansion
of a section of a steel spherical shell. Fig. 13 shows a cutaway
of the initial conditions for this experiment. The detonator is
placed in the center rear of this geometry, which will result
in a detonation wave that sweeps out over the steel shell,
straining and ultimately fragmenting it as it expands away
from the high explosive. Fig. 14 compares a series of snapshots
from the experiment alongside images of the damage variable
in the simulation at the same times. We can clearly see the
characteristic flaking pattern of the fragmentation forming in
the simulation. The surface of the steel in the experimental
photos shows evidence of this fragmentation in striations we



5th international SPHERIC workshop Manchester, UK, June, 23-25 2010

Fig. 13. Cutaway view of the initial geometry for the high explosive driven
spherical steel section.

Fig. 14. Time sequence of the expansion and fragmentation of the high
explosive driven steel spherical shell. The lower images are snapshots from
high speed photographs of the experiment, while the upper panels are images
of the damage in the simulation at the same times.

can see spreading over the surface of the steel as well as
the escape of the detonation products in the expanding cloud
appearing around the edges.

This experiment also featured a velocimetry probe. The
probe can be seen in the photographs in Fig. 14 – it is the tan
colored arm seen projecting in from the side. Fig. 15 plots the
experimental velocimetry trace vs. several different points at
the same radius in the simulation. In this case we clearly match
the experimental velocimetry better than in the expanding tube,
though the pull back seen in the velocity during the rise of
the experimental curve is not as distinct in the simulated
version. We also have fragment population data from this
experiment as well, though the recovered mass in fragments
only amounts to 60% of the mass of the shell (excluding the
steel ring). Fig.16 compares the simulated fragment population
to the experimentally recovered set. Since the experiment did
not recover all fragments we plot these distribution here as
fractional distributions of the total. It appears we match the
fragment distributions quite well for this experiment.
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Fig. 16. Fragment distribution properties for the steel spherical shell 2
experiment.

C. HE driven fragmentation of a steel tube.

Our final example is something of a combination of the
previous two: the high explosive driven fragmentation of a
steel cylinder. This experiment is described in [4]; the initial
geometry for our model is shown in Fig. 17. This experiment
is lighted on the LX-10 booster at the top, and as the
detonation wave proceeds down the high explosive it expands
and fragments the tube. In Fig.18(a) we see the detonation
wave in the pressure proceeding down the cylinder as the high

Fig. 17. Cutaway view of initial geometry for the high explosive driven steel
tube experiment.
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(a) Pressure (b) Velocimetry

Fig. 18. The (a) pressure at 50 µsec and (b) velocimetry for the high explosive
steel tube.

(a) Damage (b) Simulated Fragments

Fig. 19. (a) Damage in the tube at 50µsec leading to fragmentation. (b)
Simulated steel colored by fragment identification at 150µsec.

explosive burns. Note the evident pressure waves in the steel
following the detonation front – these waves contribute to the
strain history and therefore damage to the cylindrical shell.
Fig. 18(b) compares the velocimetry from the experiment with
the simulation at four points along the length of the cylinder.
In this simulation we have put adequate resolution through the
thickness of the tube so that we have captured the pull back
signal more effectively than in the previous examples.

Examination of the simulated fragments as they form in
Fig. 19 shows that we are generating long thin fragments
roughly aligned with the length of the tube. This makes
physical sense since initially the dominant strain mechanism
is a hoop strain going around the circumference of the tube

Fig. 20. Examples of the experimentally recovered fragments from the high
explosive tube.

(a) Binned Fragment Distribution (b) Cumulative Fragment Mass Distribu-
tion

Fig. 21. Fragment population distributions for the high explosive steel tube
experiment. Panel (a) shows the numbers of fragments binned as a function
of fragment mass, while panel (b) plots the cumulative mass in fragments as
a function of fragment mass.

which would tend to form fragments as strips, which then
break into smaller pieces as the fracture planes randomly
cross. This seems to match the qualitative morphology of the
experimentally recovered fragments in Fig. 20.

In Fig. 21 we compare the fragment mass distributions
between the ASPH simulation and experiment. The simulated
and experimental distributions are close, but there seems to be
a trend for the simulation to overproduce low mass fragments
compared with the simulation. This effect is not large, and
there are several potential causes to consider. It is possible
that this effect may be due to a biasing effect with the soft
recovery from the experiment that preferentially loses low
mass fragments, which would be very difficult to test. It is
also possible that the simulated fragments tend to have a
lower mass due to the loss of fully damaged ASPH nodes
(essentially an erosion due to how we damage the material).
If true, we would expect this effect should diminish with
increasing simulation resolution, and perhaps the simulation
would converge upon the experimental result. It’s also possible
we simply do not have the damage parameters quite correct
for steel. These various explanations remain to be tested.

IV. C.

We have discussed some our latest improvements in the
ASPH methodology, in this case highlighting new algorithms
for determining the Hαβi smoothing scale tensor from first
principles for any distribution of ASPH nodes. This represents
a significant improvement over our original methodology pub-
lished in [7]: we remove the necessity for periodic smoothing
of the Hαβi field as well as make the the choice of Hαβi robust
in arbitrarily complex fluid flows. We find that the flexibility
of ASPH in fitting arbitrarily anisotropic nodal distributions
in important for modeling the failure and fragmentation of
materials due to the generally anisotropic nature of the mate-
rial distortion. Without the adaptability of ASPH it possible
for numerical fracture to occur and preempt the physically
motivated fragmentation of materials. The ability to use non-
unit aspect ratio sampling also assists in setting up models of
materials consisting of large thin shells of material, a situation
we see in the examples presented in §III-B and §III-C.



5th international SPHERIC workshop Manchester, UK, June, 23-25 2010

While the results comparing our ASPH simulations to
experimental results in §III generally work well, there is much
room for improvement. In particular we would like to explore
using the tensor smoothing scale methodology described here
with the improved discretization numerics of one of the forms
of Corrected SPH (CSPH). The hope is that such numerical
improvements will lead to better fits for diagnostics such as the
velocimetry traces from these experiments, and overall more
accuracy in the models.

A.
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